Heart Failure
CTSHP Fall Seminar
Laurajo Ryan, PharmD, MSc, BCPS, CDE

Pharmacist Learning Objectives
- Outline the pathophysiology of heart failure
- List triggers for decompensated heart failure
- Describe current options for treating heart failure
- Identify how current and future therapy options can impact the course of disease in heart failure
- Devise an appropriate pharmacotherapy regimen for a patient with heart failure

Pharmacy Technician Objectives
- Define heart failure
- Describe the epidemiology of heart failure
- List triggers for decompensated heart failure
- Identify common adverse events associated with heart failure

“A CONDITION IN WHICH BECAUSE OF A CARDIAC ABNORMALITY, THE HEART FAILS TO PUMP BLOOD AT A RATE THAT MEETS THE NEEDS OF THE BODY WHILE MAINTAINING LOW FILLING PressURES”

“A COMPLEX CLINICAL SYNDROME RESULTING FROM A STRUCTURAL OR FUNCTIONAL CARDIAC DISORDER THAT IMPAIRS VENTRICULAR FILLING OR EJECTION”

Heart Failure Population
- ~5 million patients in the U.S.
 - Numbers rising
 - Aging population
 - MI survival
 - Mortality
 - 5 year survival ~50%
 - Factors affecting prognosis
 - Age
 - Gender
 - LV EF
 - Renal function
 - Blood pressure
 - HF etiology
 - Drug or device therapy
 - Medicare
 - Most common diagnosis
 - Most costly diagnosis
 - Age > 65
 - Most common reason for hospitalization
 - Age > 75
 - ~10%

Heart Failure Consequences
- Impaired cardiac pumping ability
 - Cannot keep up with oxygen demand
 - Dyspnea & fatigue
 - Decreased exercise tolerance
 - Fluid retention
 - Pulmonary congestion
 - Peripheral edema
Systolic vs. Diastolic

- **Systolic (HFrEF)**
 - Decreased
 - Cardiac output
 - Tissue perfusion
 - Large dilated heart
 - BP low/normal
 - L EF
 - S₃ gallop
 - Poor prognosis

- **Diastolic (HFpEF)**
 - Pooling of blood in the venous system
 - Small LV, concentric hypertrophy
 - Women > men
 - Normal or increased EF
 - S₄ gallop
 - Treatment not well established
 - Prognosis better vs. systolic

Etiology

- **“Congestive” Heart Failure**
 - Syndrome
 - Numerous etiologies
 - Common set of symptoms
 - Common physiological adaptations
 - Abnormal ventricular function
 - Neurohormonal regulation
 - Contraction (systole)
 - Relaxation (diastole)
 - Treatment not well established
 - Exacerbate symptoms
 - Reduce survival

Clinical Presentation

- Asymptomatic → cardiogenic shock
 - Jugular venous pressure
 - Heart sounds, murmurs
 - Lower extremity edema
 - Plasma BNP
 - Dyspnea, particularly on exertion
 - Pulmonary rales, crackles
 - Orthopnea
 - Paroxysmal nocturnal dyspnea
 - Exercise intolerance
 - Tachypnea
 - Cough
 - Hemoptysis
 - Fatigue
 - Nocturia
 - Ascites
 - Abdominal pain
 - Anorexia
 - Nausea, bloating
 - Poor appetite
 - Early satiety
 - Mental status changes

Treatment Goals

- Goals
 - Improve quality of life
 - Relieve/reduce symptoms
 - Prevent, minimize hospitalization
 - Slow disease progression
 - Prolong survival

- Current standards
 - Diuretics
 - ACE inhibitor or ARB
 - β-blocker
 - ± spironolactone
 - ± digoxin
11/4/2014

Key advances in the past 10 years of HF research

Pathophysiology

Pathophysiology—Decreased Perfusion

- Cardiac system senses decreased perfusion
 - Increased cardiac muscle mass
 - Hypertrophy
 - Changes myocardium at molecular & cellular levels
 - Major focus for therapeutic interventions
 - Reverse modeling, decrease mortality, slow disease progression

- Adaptive responses become harmful
 - Contribute to disease progression

Compensation

- Reaction to decreased pumping capacity
 - Compensation to maintain CO
 - Intended to be short term fix for acute reductions
 - BP or renal perfusion
 - Persistent decline in CO
 - Long term activation of compensatory responses
 - Functional, structural, biochemical, molecular changes
 - Mechanisms lead to Na+ & H2O retention
 - Preload to CO
 - Less effect on SV in HF than normal heart
RAAS Activation

- Increases aldosterone release
 - ↑ Na+ retention
 - Interstitial cardiac fibrosis
 - Other target organ fibrosis, vascular remodeling, pro-inflammatory state, oxidative stress
 - ↑ risk of arrhythmias
 - Aldosterone antagonists reduce mortality

- Angiotensin II
 - Arterial & venous vasoconstriction
 - Na+ & water retention
 - Maintains perfusion pressure in severe HF
 - Stimulates ventricular hypertrophy & remodeling
 - ACE-inhibitors / ARBs prolong survival

Increased AVP

- Vasopressin release
 - Arterial vasoconstriction
 - Venous vasoconstriction
 - Na+ & water retention
 - Initially beneficial
 - Restores hemodynamic stability
 - Eventual cardiac tolerance
 - Decreased vagal tone
 - Decreased HR variability

Autonomic System Activation

- Dysfunctional response to stressors
 - ↑ heart rate at rest
 - Contractile stimulation
 - Increased peripheral vascular resistance
 - Arterial vasoconstriction
 - Venous vasoconstriction
 - Vasotocin
 - Tachyure
 - Attempt to redistribute blood flow
 - Coronary & cerebral vessels
 - Leads to ↓ CO
 - Tachycardia & increased contractility
 - Norepinephrine
 - Abnormal baroreceptor responses

- Decreased cardiac response
 - Inotropic stimulation
 - ↓ & desensitized β1 receptors
 - Contributes to exercise intolerance
 - Contractile dysfunction
 - Reduced response to inotropic agents in acute HF
 - Metoprolol upregulates the β1 receptors
 - Hypertrophied myocardial cells
 - Shortened lifespan
 - Slower contraction/relaxation
 - Leads to diastolic failure

Counter-regulatory Hormones

- Atrial-natriuretic peptide & brain-natriuretic peptide
 - Enhance natriuresis & diuresis
 - Reduce right atrial pressure
 - ↓ systemic vascular resistance
 - ↓ aldosterone secretion
 - ↓ sympathetic activation
 - ↓ systemic resistance
 - ↓ hypotrophy
 - Vasodilation

- Elevated BNP
 - Marker for increased mortality, risk of sudden death, symptoms, hospitalization
 - BNP assays
 - BNP or N-terminal pro-BNP
 - Help with HF diagnosis
 - Recombinant human BNP (nesiritide)
 - Short-term hemodynamic & symptom improvement
 - Acute HF

HF Exacerbation

- Causes
 - Non-adherence
 - Na+ & H2O restrictions
 - Medication
 - Noncompliance
 - Inappropriate/inadequate therapy
 - Medication
 - Cardiac events
 - MI/ischemia
 - CAD
 - Atrial fibrillation
 - Anemia
 - Infection

WARNING

MEDICATION MAY CAUSE SEVERE SIDE EFFECTS SUCH AS HEADACHE, DIZZINESS, AND DEATH. TAKE AS PRESCRIBED.

HF EXACERBATION
HF Exacerbation

- Negative inotropes
 - Antiarrhythmics
 - β-blockers
 - Calcium channel blockers
 - Verapamil
 - Diltiazem
- Antifungals
 - Itraconazole
 - Terbenafoine

- Cardiotoxic
 - Ethanol
 - Doxorubicin
 - Daunorubicin
 - Cyclophosphamide
 - Trastuzumab
 - Imatinib
 - Amphetamines
 - Cocaine
 - Methamphetamine

HF Management

- Control risk factors
 - Alcohol & smoking cessation
 - Treat CAD, myocardial ischemia
 - Treat HTN, DM, lipids & thyroid

- Treatment
 - ACEI or ARB
 - Spironolactone if warranted

- Symptom treatment
 - Diuretic
 - Na+ restriction +/- digoxin

- Follow-up
 - Patient education
 - Patient self-care
 - Phone or electronic follow-up

The Interventions

DIURETICS

Loop Diuretics

- Symptomatic treatment of fluid retention
 - ↓ symptoms
 - ↓ hospitalizations
 - ↑ exercise tolerance
 - ↑ quality of life
- No evidence of ↑ survival
- Adverse effects
 - Volume depletion
 - ↓ renal perfusion
 - Hypokalemia
 - Hyponatremia

Loop Diuretics

- Most potent diuretics
 - Efficacy maintained in impaired renal function
 - Reduced effect with dietary Na+
- Electrolyte abnormalities
- Dosing strategies
 - Dose increase
 - Addition of thiazide
 - Bolus vs. CI
Thiazide Diuretics

• Weak diuretics alone
 – Combine with loop
 – Improved diuresis
• Comparable effects
 – Metolazone ↑ potent
 – Even with ↓ renal function

VASODILATORS

ACE Inhibitors

• Standard of care
 – Improved hemodynamics
 • ↓ SVR (afterload)
 • ↑ stroke volume • CO
 • ↓ pulmonary wedge pressure
 – Improved functional status
 • ↑ exercise tolerance
 • ↓ symptoms
 – Improved survival
 • 20—30% vs. placebo
• Adverse events
 – Cough
 – Hypotension
 – Renal insufficiency
 • Drop in GFR
 – Hyperkalemia
 – Angioedema
• Contraindications
 – Angioedema
 – Pregnancy

Angiotensin Receptor Blockers

• Similar benefit to ACE inhibitors
 – Theoretical advantage over ACE inhibitors
 • Block receptor vs. production
• Well tolerated—no cough
 – No effect on bradykinin
• Less drug interactions
 – Not metabolized by cytochrome P-450
• Recommended if ACE intolerant
 – Cough
 – Angioedema cross reaction—use extreme caution

Nitrates & Hydralazine

• Nitrates
 – Venodilation
 – ↓ preload
• Hydralazine
 – Direct vasodilator
 • ↓ SVR, ↑ SV & CO
• Combination long-acting nitrate & hydralazine
 – Add-on to standard therapy in African Americans
 • 43% decrease in all-cause mortality
 – Non-African American patients intolerant of ACE inhibitor/ARB

BETA-BLOCKERS
β-Blockers

- Stable patients with ↓LVEF
 - Add—on therapy
 - Improve survival
 - Decrease HF progression
 - Increase ejection fraction
 - Improve symptoms
 - Numerous large clinical trials support benefit
 - Carvedilol (Coreg®)
 - Metoprolol succinate (Toprol XL®)
 - Bisoprolol (Zebeta®)
 - Positive effects NOT a class effect

- Initiate low dose
 - Titrate slowly (over weeks)
 - Adverse effects—particularly with too fast titration
 - Bradycardia
 - Hypotension
 - Fatigue
 - Worsening HF
 - Continue during hospitalization unless hemodynamically unstable

Aldosterone Antagonists

- Aldosterone
 - Na⁺ & H₂O retention
 - Myocardial hypertrophy
 - Myocardial fibrosis
 - Vascular remodeling

- Aldosterone blockade
 - Inhibit Na⁺ reabsorption
 - Inhibit K⁺ excretion
 - Improved survival
 - Pump failure
 - Sudden cardiac death

- Spironolactone (Aldactone®)
 - Gynecomastia

- Eplerenone (Inspra™)
 - Selective mineralocorticoid receptor blocker
 - No gynecomastia

- Recommended
 - Stage C & D (B with major risk factors)
 - Benefit in early disease not as well established

MISCELLANEOUS AGENTS

Digoxin

- Does NOT improve survival
- Improves symptoms
 - ↑ exercise tolerance
 - ↑ CO
 - ↓ hospitalization
- Mild positive inotrope
 - Decreased sympathetic activation
 - Sensitizes baroreceptors

- Withdrawal
 - Risk of worsening HF
 - ~30% in subsequent 3—5 months

- Predictors of efficacy (symptomatic patients)
 - S₃
 - Longer duration of HF
 - LV dilation
 - LVEF depression

- Low dose
 - >1.0ng/mL associated with ↑ mortality

Antiarrhythmic Drugs

- Sudden cardiac death
 - 40—50% HF mortality
 - Ventricular tachyarrhythmias

- Empiric antiarrhythmic therapy
 - No benefit in HF
 - Pro-arrhythmic

- Amiodarone (Cordarone®, Pacerone®)
 - Destabilizing ventricular tachycardia, fibrillation or sudden death
 - Prevents excessive defibrillator shocks
Anticoagulation

- Thromboembolism is common
 - Especially with very low EF
- Should all HF patients be anticoagulated?
 - Controversial
 - Absence of atrial fibrillation
 - Trials have significant overlap

Seven Major Classes of Biomarkers Contributing to the Biomarker Profile in HF

Neprilysin Inhibition

- HFrEF
 - Angiotensin receptor–neprilysin inhibitor
 - LCZ696 vs. enalapril
- Methods
 - Double-blind randomized controlled trial
 - N = 8442 class II–IV heart failure & EF ≤ 40%
 - Primary outcome
 - Composite of CV or hospitalization for HF
- Results
 - Trial stopped @ mean f/u 27 months
 - Primary outcome
 - LCZ696 = 514 (21.8%) vs. enalapril = 1117 (26.5%)
 - Hazard ratio 0.80; 95% CI, 0.73 to 0.87; P<0.001
 - LCZ696 group
 - > hypotension, non-serious angioedema
 - < renal impairment, hyperkalemia, cough
- Conclusions
 - LCZ696 superior to enalapril in reducing risk of death & hospitalization for HF
Non-Pharmacologic

![Image of LVAD and heart](image)

Cardiac Stem Cells

- **Homing mechanism**
 - Migrate to heart after injection

Heart Failure

- **Common deadly disease**
 - Numerous compensatory mechanisms
 - HFrEF vs HfPEF
 - Treatment differences
 - Current therapies
 - Up & coming therapies